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Abstract:

This paper aims to establish existence results for a coupled system of nonlinear
quadratic integral equations of the Volterra-Stieltjes type in the space of
continuous functions over a closed bounded interval. The existence of solutions
is demonstrated using the Schauder fixed point principle. This approach enables
us to derive existence theorems under broad and general conditions.
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1. Introduction

Integral equations play a crucical role in modeling various phenomena and
events in applied sciences. This field has witnessed significant development
through the use of functional analysis, topology, and fixed point theory (see[1,
9, 10, 11, 12, 15]). Among these advancements, Volterra-Stieltjes integral
equations have attracted considerable attention, with several studies dedicated
to their analysis (see [5, 7, 16, 17, 18, 19]).

The primary objective of this paper is to examine the solvability of a coupled
system of quadratic VVolterra-Stieltjes integral equations.

Give the importance of the Stieltjes integral in this context; we rely on the
definitions and properties introduced by Banas' (see [2, 3]).

Additionally, interest in studying such coupled system has been sparked by
previous research on related topics.

In this study, we establish some existence theorems for a coupled system of
quadratic Volterra-Stieltjes integral equations, which encompass various typs
of Volterra integral equations as special cases. Our proof is based on the fixed-
point principle, enabling us to derive existence results under broad and flexible
assumptions.

Throughout this paper, let I = [0, T] and X be the Banach space of all ordered
pairs (x,y) € X = C(I) x C(I), with the norm
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(X M)lx = max {l|x|[¢, [Iyllc}

where
llx[lc = suplx|, |[yll¢ = sup|y],
tel tel

It is clear that (X, ||(x, y)||x) is Banach space.

Now, we shall present some auxiliary properties of fractional calculus that will
be need in this work.

Definition 1. The Riemann-Liouville of a fractional integral of the function f €
L_1 (I of order & € R™ is defined by

t(t—s)* 1

IGf(t) = [y f(®) ds.
and when h = 0, we have I* f(t) = ISf(t).

Definition 2. The (Caputo) fractional order derivative D%, a € (0, 1] of the
absolutely continuous function g is defined as

d
D5g(t) = Ié‘“ag(t), t € [a, b].

For further properties of fractional calculus operator (See [20], [21], [22] and
[23]).

2. Preliminaries

In this section, we study the solvability of the coupled system of nonlinear
quadratic integral equations of VVolterra-Stieltjes type having the form

x(t) = hy(t) + f1(t, y(w1 (D)) .[0 uy(t, s, y(w1(s))dsg1(t,s), tel

1)

y() = hy(t) + f12(t, y (w2 (1)) .[0 U, (t, s, y(w,(s))dsg2(t,s), tel
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Our goal is to show that system (1) has at least one solution in the space X. For
our further purposes we denote by A the triangle A = {(t,s):0 < s <t <
T}.

In our investigations, we give some assumptions which are needed throughout
this paper.

(1) h;: 1 - R, (i = 1,2) are continuous on I. There are constants h;, where h; =
sup|h;(¢)].

tel

(i) fi: 1 xR - R, (i = 1,2) are continuous functions and there exist
continuous functions
m;(t) : I — Isuch that

Ifi(t.x) — fi(t,¥)| = my(D)|x — ],
forallx,y € Randt € I. Moreover, we putm; = max{m;(t)t € I,}.

(i) u;(t,s,x) : AX R - R,(i = 1,2) are continuous functions and there
exist continuous functions n;(t, s) : A — I, and continuous and nondecreasing
functions ¢; : R+ — R +, such

that

lwi(t, s, %)| < n;(L,s)ei(|x]),

for all (¢,s) € A and x € R. Moreover, we put n; = max{n;(t,s)t,s €

I}.
(iv) w; : I - I are continuous, (i = 1,2).

(v) Functionss — g;(t,s) are of bounded variation on [0, t] for each t €
Ii = 1,2

(vi) Functions g; are continuous on the triangle A and g;(t,0) = 0 fori =
1,2.

(V") gi(t,S) =9;: Ai_) R,i = 1,2 and for all tlrtZ € I with t1 < tz,
the functions s - g;(t,,s) — g;(t4, s) are nondecreasing on 1.

(viii) For any € > O there exists § > 0 such that, for allt;; t, € I such that
ty < t,andt, —t; < 6
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the following inequality holds

t
Vigite 9 - gt <€ i=12
0

s=

Obviously, we will assume that g;, (i = 1,2) satisfy assumptions (iv) — (vii).
For our purposes, we will need the following lemmas.

Lemma 1. [6] Under assumptions (v)-(viii), The functions z — VZ_, gi(t,s)
are continuous on [0, t] forany t € I (i =1,2).

Lemma 2. [6] Let assumptions (v)-(viii) be satisfied. Then, for arbitrary fixed
number0 <t, € I
and forany € > 0, thereexistsd > Osuchthatift, € I, t; < t, andt, —

t; < Sthen V2, gi(tz,8) <e (i=12).
Further, let us observe that based on Lemma 1 we infer that there exists finite

positive constants
K;, such that

K; = sup{\/g,-(t,s):t € [O,T]}.
s=0

where T > 0 is arbitrarily fixed (i = 1,2).
We now introduce some functions that will be useful in our further studies:
ty

W, = sup{\ /(9,629 — 9.t1,9) s tr, 1 €Lty <t <€i=12
s=0

In what follows let us denote by F; the constant defined by the formula:
F; = sup{|f; (t,0)]|: t € I,i = 1,2}.

Now, we are in position to present tha main result of the paper.

3. Main Result
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Defined the operator by
T(x,y)(t) = (T1y(t), T2x(D)),

where

Tyx(t) = hy(t) + f1(t'Y(w1(t)) f;u1(S»Y(w1(S))ds91(t» s), tel
(2)

T,y(t) = hy(t) + f12(t, y(w2 (D)) jo u, (s, y(w2(s))dsg2(t, s), tel

Theorem 1. Let assumptions (i)-(vii) be satisfied. Then the coupled system of
quadratic Volterra-Stieltjes integral equations (1) has at least one solution (x, y)
belonging to the space X.

Proof. We prove a few results concerning the continuity and compactness of
these operators in the space of continuous functions.
Define

V={v=(x®,y®): (x@®),y®)eX: [(x,ylx <}

For (x,y) € V, and define the operator T map V into V, we have

IT1y()] < Ihel + If1(t (@1 (O)] [ 1u1(t,5,y(@1())]ldsg1 (&5

St||h1|| + [my|y(©)] +
1f1(& 0] J; 1 (8, )1 (Iy($)ds (V=0 91 (L, P),

< lhqll + [llyllmy + Filni@1(lyID(Vp-0 91 (t. 2),
IT1yll < [Ryll + [rymy + F{]ny@4(ry) Stlel}’(vfpo g1(t,p)).
Hence, we get

Tyl < [lhqll + Kq[my7ry + F1]n19,(11).

From the last estimate we deduce that 1, = Lal*F1K1n191(r1)
1-min1K191(r1)

By a similar way, we obtain
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lhy|| + FoKony @4 (1)
Tyl < ||h K F T2 = '
IT2yll < lihzll + Ka[mors + Falna gy (r2). 12 = = - o

Therefore
ITvllx = [T Wx = IT1y, Toxllx

< max{||T1ylle, IT2yllc} =7
Thus for everyv = (x,y) € V, we have Tv € V and henceTV c
V,(i.eT: V — V). This means that the functions of TU are uniformly
bounded on I, it is clear that the set V is nonempty, bounded, closed and convex.
Now, we need to show that the set TV is relatively compact.

Forv = (x,y) € V,foralle > 0,6 > 0, and for each t4,t, € I( without
loss of generality assume that t; < t,, suchthat |t, — t;] < &, we have

T y(tz) — T1y(tq)|

= |hy(t3) — hy(ty) +
f1(tz, y(w4(t2))) f(:z Uy (tz» S»)’(w1(5))) d;g.(t;,s)

— F1(ty, y(@1(60)) fy s (81,5, ¥(01(5))) dega (t1, )
< Ry (t2) = hy(E)] + [f1(t2 Y(@1(£2))) — f1(t2, ¥ (@1 (1))
|z us (825, 9(@1(5))) dega(t2,9))|
+If1(t2,y(@1(E)) Jy> 11 (2,5, ¥(@01(9))) dega (t2,5)

— |f1(t1, y(w41(t1))) f(fz uq(ty,s, )’(w1(5))) d;g,(t;,s)
— |f1(t1, y(w1(t1))) f(:z Uy |ty s, }’(w1(5))) dsg.(ty1,s)

+1f1(t Y (@1(E0)) [;2 w1 (t2, 5, ¥(01(5)) ) dega (t2,5)
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+ |f1(tq, Y(w1(t1)))f 2u1 ) S, )’(w1(3‘)) d;g,(ty,s)

(¢ )
— |f1(t1,y(w1(t1)))f 2 Uy (t1 S, )’(w1(3‘))) d;g,(ty,s)
( )
)

+ |f1(tq, Y(w1(t1)))f 2u1 ty,s, )’(w1(3‘)) d;g,(ty,s)

— f1(t1¥(@1ED)) [y w1 (t1, 5, ¥(01(5)) ) dega (t,5)

< N(htp €) + my(t;)|y(t;) —
y(t)l f02|u1(t2, S»)’(w1(s)))|ds(V§=o 91(’52:17))

+|f1(t2 ¥(t1)) —

Uy (tz,s,y(wl(s))) dS(V;)=0 .91(t2;17))
(t2.5,¥(01()))| ds(V3—olg1 (t2,p) -
91(t1;P)])
(t2 5. ¥(01(s))) -
uq (t1»5»}’(w1(5))) ds(Vf;:o .91(t1»P))

+ |f1 (t1;}’(t1))| ftiz|u1 (t1;5»)’(w1(5)))|ds(vz=o gl(tl»P))
< R(hq,€) + my(t)R(y, E)f 2711(152 s)e1(| y(s)Dd; (Vp 091(t2,0))

+ Nfl (E) fotz n1(t2; S)(pl(l y(s)l)ds(V;S):O .91(t2» p))

+[m, (t1)|Y(t1)| +
|f1(t1,0)]] fzn1(t2 s)e1(] y(s)Dd; (V olg1(t2,p) — 91(t1,P)])

+ [my (DY) + 11, O [ Ryr (€)ds(Vio 91 (1, D))
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+[m, (t1)|yt(t1)| +
|f1(t1,0)]] ft: ny(ty,s)@q(| }’(S)Dds(V;:o 91(t1,p))

Where

R(h;, €) = sup {|hy(tz) —h (t)]: ty,t; € L|t; — t1]| < €i=
1,2},

Rri(€) = sup {|fi(t2,v) — fi(t1, V)| : ty,t € Ltz — 4] <
€VER,i=12}

Nyi(€) = {|u1(t2,s,v(s)) - uz(t1»5»”(5))| D ty,t; € Lty —
t) < eveERi=12}

Then, form estimate we get

IT1y(tz) — T1y(E)| < R(hy, €) + [my(t2)R(Y, )Xpi(€)ny 1 (| ¥IID) +
Iy’ ds(V5-0 91(t2,P))

+ [my llyll +
Fil[n1@1 (Y1 ;7 do(Vy—olg1(t2,p) — 91(t1,P)])

+Ry1(€) ;2 do(Vi—o 91(t2,9)) + apa (N Y1) £, ds (V0 91(t1, P)) |

< R(hy, €) + [m1(t2)R(Y, ©)Rg;(€)ny 1 ([l ¥I1D) +
Jy* ds(Vi-0 91(t2,9))

+ [my llyll +
Fil[ni@1 (I Y1 J;? ds(Violg1(t2,8) — g1 (1, 5)])

+ X1 (6) fy (V3o 1(t2,5)) + 1 @1 (1 Y11 [ Ay (Vg g1 (81, 5))]

< KX(hy, €) + K1[mX(y, €) + Rfy ()[04 (1)
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+ [my 7+ F1][n10,(r)W,(€) +
Rr1(€)[g1(t1, t2) — 91(841,0)]

+ 1191 (M)[g1(t1, t2) — g1 (81, t1)]].

Hence, from the continuity of the functions g, assumption (vi), we deduce that
T, maps C(I) into C(I). As done above we can obtain

[Ty (t;) — Ty (E1)| < R(hy, €) + Ko[myR(y, €) + Rpp(€)ny@ (1)

+ [my 1 + Fal[na@,(rW,(€) +
K2 (€)[g2(t1,t2) — g2(t4,0)]

+ ny0,(r)[g2(t1, tz) — g2(t4, t1)]]

Also, by our assumption (iv), we see that T, maps C(I) into C(I).
Now, from the definition of the operator T we get

Tv(ty) —Tv(ty) = T(x,y)(t2) — T(x,y)(t1)
= (T1y(t;), Tx(t)) — (T1y(t1), Tox(t1))
= (Tl)’(tz) —T1y(t1), Tox(ty) — sz(t1))-
Therefore
ITv(ty) — To(t)Il = |[(T1y(t2) — T1y(t1), T2x(t;) — Tox(t))||
= max {||T1y(ty) — T1y&)Il, IT2y(tz) —
T,y(ty)l[}
< max {X(hy, €) + K,[m;R(y, €) +
Nr1(€)]ny@4(r)

+ [myr + F1}[ny@1(mWq(e) +
Ryu1(€)[g1(ty, t2) — g1(t1,0)]
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+n191(r)[g1(E1, t2) — g1(t1, E1)]],
N(hy, €) + K3[m,R(y, €) + Rpy(€)|ny¢0,(7)

+ [myr + Fa}[n@, (MW, (e) +
Ruz (€)[g2(t1,t2) — g2(t4,0)]

+ Ny, (1)[g2(E1, t2) — g2(t1, E1)]1}

This means that the class of {Tv(t)} is equi-continuous on I, then by Arzela-
Ascoil theorem {Tv(t)} is relatively compact.

Now, we will show that the operator T : V — V is continuous.

Firstly, we prove that T, is continuous. Lete * > 0, the continuity ofu;,i =
1,2, yields, 36 = &(e =) such that |u;(t,s,u(s)) — w;(t,s,v(s))| < €+
,whenever[u — v [|< &, thusiflly — ull < &, we arrive at:

|(T1y)(®) — (T1w) (®)]

< |f1&y(@1®) [y w1t 5,¥( 01(5))dsg1 (. 5)

~f1(tu (@1(D) [y w1 (65, u( 01(5))dsg1 (&, )|

< |F1ty(@1(0) fyus(t,5,u( w1(s))d,g4(t,5)
— f1(tw(@: (1) fy uy(t5,y( 01(5))dsgs1(t,5)|

+ f1(tw(@1(®) [y u1(t,5,y( @1(5))degs (t,5)
— f1(tu (@1(®) [y us(t, s u( @1())d,g (L, 5)|

< |f1ty (1)) - F1(t w(@1 ()] fy|ur(t.5,y( 01()| dsga(t.s)

+ 1f1(t, u (w1 (D)) f(:lul(t» s, ¥(w1(s)) —uy(t, s, u( w1(5))|dsg1(t; s)
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< my@®ly® —u®| [; 11t )1 (1y(S)]) dsgq(t,s)
+ [my Olult)] +

£, O [ us(t 5,7 01(5)) — us (¢, s, u( @1 ()| dsg1(t, )
< (8myny@1(lyl) + [myllull + Fle") [ ds V50 1(t.P)
< (6myny @1 (Ily1D) + [myllull + F1]€7) Vi_o 91(t, ),
< (6myny @4 (llyl) + [myllull + F1]€")Ky,
where

€ = (bmyny @, (llylD) + [myllull + F1]€")K;.
Therefore

|(T1y)(@) — (T;w) (V)| < e

This means that the operator T is continuous.

By a similar way as done above we can prove that for any x,u € C[0,T] and
Il x — vl < & wehave

|(T2x)(t) — (Tv)(D)| < €.

Hence T, is continuous operator. The operators T; (i = 1,2) are continuous
operator this imply that T is continuous operator. Since all conditions of
Schauder fixed point theorem are satisfied, then T has at least one fixed point
v = (x,y) € V,which completes the proof

Corollary 1. Let assumptions of Theorem 1 be satisfied. Then quadratic
Volterra-Stieltjes functional integral equation

x(t) = h(®) + ft,y(0®) [ ut,s,y(w(s))dsg(t,s),
tel (3)

has at least one solution x € C(1I).
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Proof. Let the assumptions of Theorem 1 be satisfied. Withx =y, f1 = f, =
f, u1 =u, =u, and hy = h, = h. Then the coupled system (1) will be the
Volterra-Stieltjes quadratic integral equation (3)

3. Existence of unique solution
Here, we study the uniqueness of the solution (x, y) € X of the coupled system
of
quadratic Volterra-Stieltjes integral equations (1). Assume that functions ¢; :
R+ — R + have the
form¢@;(x) = 1 + |x|, and the functions n;(t,s) € C(I)denoted by b; = ||
n; |l = max{n;(t,s)t,s € I,i = 1,2}.Then

lu;i(t, s, %) < n;(t,s)(1 + |x]).

Notice that this assumption is a special case of assumption (iii).
Consider now the assumptions (ii)*, (iii)* having the form

@i)* fi: 1 X R — R are continuous functions and there exist constants numbers
m; such that

Ifi(t, %) — fi(&, Y)| < my[x —y|, i=1,2.
From this assumption, we can deduce that
lu;(t, s, x)| — |w;(t,s,0)| < |u(t,s,x) —u;(t,s,0)] < byx|,
which implies that
lu; (¢, s,%)| < |u;(ts,0)| + by|x| < n(t,s) + b;|x|,

where n;(t,s) = sup|u;(t, s, 0)|.
tel

Theorem 2. Let assumptions of Theorem 1 be satisfied with replace
assumptions (ii), (iit) by (ii)*, (iii)*, if the following conditions hold

mn+ br)+ (mr+ F)K < 1.

Then the coupled system (1) has an unique solution (x, y) € X.
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Proof. Let v; = (x4,y1) and v, = (x5,y,) be two solutions of the coupled
system (1), we have

(x4, ¥1) — (X2, ¥2)llx = [(x1 — x2,¥1 — Y2llx

= nggx{||x1 — x2|l, [ly1 — y21I}-
Now

|x1 (£) — x2(8)]

< |f1(t y1(@1(®) [ s (65,71 (01(5))d,g1 (8, 5)
— f1(&Y2 (@1(8) [y u1(t,5,y2( 01(5))dsg1 (&, 9)|

< |f1Ey1(@1(8) [y us(t.5,71(01(5))dsg:(t, )

— 1.2 (@1(8) [y u1(t,5,y1( 01(5))dsg1(2,5)|

+ |1t y2(01(®) fy w1t 5,71 ( 01(5))dsg1 (8, 5)

— f1(t.y2 (@1(8) fy u1(t,5,y2( 01(5))dsg1 (2, 5)|

< [f1ty1(@1(®) = F1(t y2(@1®)] [ [u1 (.5, y1(@1(5))|ds g1 (L, 5)

+1 f1(6,y2 (@1O)] [ [us(t, 5,31 (01(s)) —
uq(t,s, )’2( w1(5))| d;g1(t,s)

< my|y,(t) — y(t)] f;(’%(t; s) + b4|yl)dsg4(t, s)

+ [myly2 (O] + 1f1(& 0)11b; [ 1y1 (1) — y2() dsga (L, s)

< [||Jt’1 — y2llmy(ny — bqlly41l]) + [mylly2ll + F1]lly: —
Y2l [, ds(Vp=0 91t D))

<my(ny + bylly11) + [mqllyzll + F1lly: — ¥2111(ViZo 91 (L, 5))
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<m;(ny + byry) + [myry + F1]K4||y; — y2ll.
Therefore

lxq — x2|| < m(n + br) + [mr + F]K||y, — y2ll,
where

b = max{b,,b,}, m = max{m,;,m,}, n = max{n,n,}, F =
max{F,F,}and K = max {K,,K,}.

Similarly
ly1 — y2ll < m(n+ br) + [mr + FIK||x; — x,]|.

Then

1(x1, 1) — (X2, ¥2)lx = [(x1 — x2, 1 — Y2llx

= I?gx{||x1 — X2lle lys — y2llc}

= ntléalx{m(n + br) + [mr + F]K||y; — y;|lm(n + br) + [mr +
FIK]|[x1 — x2]}

= [m(n + br) + [mr + F]K] r?glx{”x1 — %2l lly1 — ¥2llc}

=m(n + br) + [mr + F]K ||(x1,y1) — (x2,¥2)lIx-
Which implies that
[1 —m(n+ br) + [mr + FIK]|[(x1,¥1) — (x2,¥2)lIx < 0.
This means that
(x1,¥1) = (x2,¥2) = X1 = X3, Y1 =Yz
This proves the uniqueness of the solution of the coupled system (1).
4, SPECIAL CASES

In this section, we will consider a coupled system of quadratic Volterraintegral
equations of fractional order, which has form

x(t) = hy(t) +

f1ty(w1(D)) fot (t;(sz)_l u (t,s,y(w () ds, tel
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(4)
y(®) = hq () +

f2tx(w2 (1)) fot (tr_(so):)_l uy(t, s, x(w,(t)) ds, tel

wheret € I = [0,T]anda; € (0,1),and I'(;),i = 1,2, refers to gamma
functions. Let us mention that (4) represents the so-called a coupled systems of
Volterra quadratic integral equations of fractional order. Recently, such a type
this type has been widely investigated in some papers [1, 9, 10, 12, 13, 14]
Here, we show that a coupled systems of fractional orders (4) can be treated as
a special case of a coupled systems of quadratic Volterra-Stieltjes integral
equations (2) studied in Section 2.

In fact, we can consider functions g;(t,s) =g;: A — R,i = 1,2, defined
by the formula

t% — (t—s)*

gi(t; S) =

We can see that functions g; i = 1,2, satisfy assumptions (vi)-(vii) in
Theorem 1, see [6, 8].

Now, we state the following existence results for couple system of quadratic
Volterra integral equations of fractional order (4).

Theorem 3. Let assumptions (i)-(viii) of Theorem 1 be satisfied. Then a
coupled systems of fractional orders (4) has at least one solution (x,y) € X.

Corollary 2. Let assumptions of Theorem 3 be satisfied (with = y,u; =
U, = u 1f1 = fz = f!hl = hZ = h and a; = a = 0() Then the
fractional-order quadratic integral equation

x(t) = h(t) +

t(t—s)* 1

f(t, x(w(t))) fo @ u(t,s,x(w(t))) ds, tel

has at least one solution in x € C(l) .

Corollary 3. Let assumptions of Theorem 3 be satisfied, with f,(t, y(t)) =
f2(t,x(t)) = 1. Then a coupled system of the fractional-order quadratic
integral system
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t (t _ S)a—l
x(t) = hy(t) + J W u (t, s, y(w,(t))) ds, tel
)
t (t _ S)a—l
y(t) = hy(t) + f W U, (t, s, x(w, (1)) ds, tel

has at least one solutionin (x,y) € X.
Now, letting a4, @, — 1, we obtain

Corollary 4. Let assumptions of Theorem 3 be satisfied. Then the coupled
system of the initial value problems

% =u, (t, s,y(wl(t))), tel, x(0) = x,,
t (6)
% = U, (t, s,x(wz(t))), tel, y(0) =y,

Proof. Let assumptions of Theorem 3 be satisfied (with fq(t, y(t)) =
f2(t,x(®) = 1,hy(t) = xo, hy(t) = yo and lettinga, B — 1. Then a
coupled system of the fractional-order quadratic integral equations

x(t) = xy + j u(t, s, y(wq(t))) ds, tel,

7)
() = yo + f wi(t s, x(wy (D)) ds, el

has at least one solution in X which is equivalent to the coupled system of the
initial value problems (6).

Corollary 5. Let assumptions of Theorem 3 be satisfied. Then the coupled
system of fractional order differential equations
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D%x(t) = u, (t, s,y(wl(t))), tel
(8)

D%y(t) = u, (t, s, x(w, (t))), tel,
with the initial conditions

'~ *1x(t) | =0 = 1172y (t) | t=0 = 0, aj,a; € (0,1],
9)

has at least one solution in (x,y) € X.

Proof. let us proof the coupled system of the initial value problems (8) and (9)
IS equivalent to the coupled system of quadratic integral system

t _ a-1
x(t) = L % u (t, s, y(w,(t))) ds, tel

(10)

t _ a-1
y(t) = f % u,(t, s, x(w, (1)) ds, tel

By operating I'~%t and I1~%*2respectively on each equation of coupled system
(10), and applying properties of fractional operator [23], we obtain

I'"%1x(t) =
Muy(t s, y(,(1)), 174x(t) ], =0

I'~2y(t) = Muy(t s, y(w0, (1)),  1'72y(t)|,—0 = 0.

Also,

%11‘“1x(t) =u, (t, s,y(wl(t))), tel, a; €(0,1)
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%11‘“2y(t) =u, (t, s,y(wz(t))), tel, a, €(0,1).

Conversely, by integrating the coupled system of initial value problems (8) and
(9), we have

I~x(t) — I"x(t) | o = I'uy(t, s, y(w1 (1))

192y (t) — 1792y (8) | o = Iz (8,5, 9(0(D))).

Operating by I*1 and I*2 respectively on each equation and differentiating, we
have (10). Thus, the equivalence hold.

Let assumptions of Theorem 3 be satisfied (with f (t,y(wl(t))) =

fa (t,x(wz(t))) = 1,h{(t) = h,(t) = 0. Then there exists at least one
solution in X for the coupled system (8 and 9).
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