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Abstract:

The purpose of this study is to prove actuality findings for a coupled system of
Volterra- Stieltjes type nonlinear quadratic integral equations over a
unrestricted bounded interval in the space of nonstop functions.
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1. Introduction

In the applied lores, integral equations are essential for bluffing a variety of
events and marvels. Functional analysis, topology, and fixed point proposition
have all been used to make substantial advancements in this discipline ( see ( 1,
9,10, 11, 12, 15)).

Examining the solvability of a coupled system of quadratic VVolterra- Stieltjes
integral equations is the main thing of this work.

We calculate on the delineations and parcels presented by Banas ( see( 2, 3))
to explain the significance of the Stieltjes integral in this environment.

also, previous exploration on analogous areas has inspired interest in probing
similar coupled systems.

The actuality theorems for a linked system of quadratic Volterra- Stieltjes
integral equations, which include several types of Volterra integral equations as
special cases, are established in this paper. We decide actuality results under
general and flexible hypotheticals thanks to our evidence, which is grounded
on the fixed- point conception.

Throughout this paper, let1 = (o, 1) and x be the Banach space of all ordered
dyads (x,y) € X = ¢(I) x c(I), with the norm
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G, Y llx = max {|Ixlic, lyllc}.

where

llxllc = suplx|, llyllc = suplyl,
tel tel

It's clear that (X, ||(x, y) ||, X) iS Banach space.

Now, we shall present some auxiliary properties of fractional calculus that will
be need in this work.

Definition 1. The Riemann-Liouville of a fractional integral of the function
f € L_1(1) of order « € R* is defined by

t (t-s)* 1

IEf(0) = [y “Fos— f(s) ds.

and when h = 0, we have ...

Definition 2. The (Caputo) fractional order derivative b, « € (0,1] of the
absolutely continuous function g is defined as

d
Dig(t) = Ié‘“ag(t). t € [a,b].

For farther parcels of fractional math driver( See (20),(21),(22)and (
23)).

2. Preliminaries
In this section, we study the solvability of the coupled system of nonlinear

quadratic integral equations of Volterra- Stieltjes type having the form

x(t) = hy(t) + f1(t, y(w1()) fo uy(t, s, y(w1(s))dsg1(t,s), tel
1)

y(&) = hy(t) + f12(t, y(w2 () fo uy(t, 5, y(w2(s))dsg2(t,s), tel
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Our thing is to show that system ( 1) has at least one result in the space x.
For our farther purposes we denote by A the triangle A= {(t,s)0 < s < t <
T}.

In our investigations, , we give some hypotheticals which are demanded
throughout this paper.

(i) hi:1 > R, (i = 1,2) are continuous on I. There are constants h;, where h; =
sup|h;(®)|.
tel

(i) fi: 1 x R - R, (i = 1,2)are continuous functions and there exist
continuous functions

m;(t) : I - Isuch that
Ifit,x) — fi(t,y)] < m(®)|x — y|

forall x,y € randt € 1. Moreover, we put m; = max{m;(t)t € I,}.

(i) w;(t,s,x) : Ax R - R,(i = 1,2) are continuous functions and there exist
continuous functions n;(t,s) : A — I, and continuous and nondecreasing
functions ¢; : R+ - R +, such

that

lui(t, s, 0)| < n;(t,s)p;(|x)),

for all (t,s) € A and x € R. Moreover, we put n; = max{n;(t,s) t,s € I}.
(iv) w; : I = I are continuous, (i = 1,2).

(v) Functionss — g;(t,s) are of bounded variation on [0,¢] foreacht € I,i =
1,2.

(vi) Functions g; are continuous on the triangle A and g;(t,0) = o fori = 1,2.

(viD) gi(t,s) =g;: A;~ R,i = 1,2 and forall ¢;,¢, € 1 witht, <t,, the functions
s — g;(ty,s) — gi(ty,s) are nondecreasing on 1.
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(viii) For any e > o there exists 6 > o such that, for alle;; t, € rsuch that¢; <
tandt, —t; < &

the following inequality holds

t

V0t - gt <e i=12

s=0

Obviously, we will assume that g;, (i = 1, 2) satisfy hypotheticals (iv) —
(vii). For our purposes, we will need the following lemmas.

Lemma 1. [6] Under hypotheticals (v)-(viii), The functions z — vz_, gi(t, s)
are continuous on [o,¢] forany t € 1(i = 1,2).

Lemma 2. [6] Let hypotheticals (v)-(viii) be satisfied. Then, for arbitrary
fixed numbero <t, € 1

and for any e > o, there exists 6§ > osuchthatift, € I, t; < t,ande, — t;, < &
then vz, gi(t,,s) <e (i=1,2).

s=t1

Further, let us observe that grounded on Lemma 1 we infer that there exists
finite positive constants

K;, similar that

t
K; = sup {\/gi(t,s):t € [O,T]}.

s=0

where T > o is arbitrarily fixed (i = 1,2).
We now introduce some functions that will be useful in our further studies:

t2
Wi = sup {\/(gi(tz,S) _gi(tlJS)) : tl, tl € I, tl < tz < E,i = 1,2 }

s=0
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In what follows let us denote by F; the constant defined by the formula:
F; = sup{|f; (t,0)|: t € I,i = 1,2}.
Now, we are in position to present the main result of the paper.
3. Main Result
Defined the operator by
T(x' y)(t) = (le(t), TZx(t));
where
t
Tix(®) = (®) + f16y(0:0) | wiy(@@)dga(ts), el
)

t
Toy() = ha(t) + f1a(t, y(02(D) fo s (5, y(@3())ds gy (t,s),  teEl

Theorem 1. Let hypotheticals ( i)-( vii) be satisfied. also the coupled system
of quadratic Volterra- Stieltjes integral equations( 1) has at least one
solution ( x, y) belonging to the space x.

Proof. We prove a many results concerning the continuity and compactness
of these operators in the space of continuous functions.

Define
V={v=_(x@®),y®): (x@®,y®))eX: Ix, Il x <1}

For (x,y) € v, and define the operator T map v into v, we have

Ty (®)] < el + |f1(t y(@1(O)] [y (¢, 5, y(@1(5))]|dsg1 (2, 5]
< byl + [mly(®)] + |f1(£ 0[] f; ny (£, )11y ()5 (Vpo g1(t, P),
< IRyl + [ylimy + Fylny @1 (Iy1) (Vp=0 91(t D),

IT1yIl < l[hyll + [rymy + F1]n1¢4(rq) Stlel})(V;mo 91(tp)).
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Hence, we get
IT1yll < [[hqll + K1[my7y + F1]lny04 ().

|kl +F Km0, (ry)

1-myn1K19,(rq)

From the last estimate we conclude that r, =

By a analogous way, we gain

[[h2]|+F2Konz¢2(r2)
T < |lh K,m,r F,n ry).Ty, = :
IT2yll < llhzll + Kz2[mzrs + F2lnp@;(r2).12 PR

Thus
ITvllx = [T lx = [IT1y, T2xllx

< n}ealx{llhyllc, ITyllc} =T

Therefore for everyv = (x,y) € v, we have Tv € vand hencerv c v,(i.eT:
v - V). This means that the functions of Tv are uniformly bounded on 1, it is
clear that the set v is nonempty, bounded, closed and convex. Now, we need to
show that the set Tv is relatively compact.

Forv = (x,y) € v, forall e > 0,6 > 0, and for each ¢,,t, € 1( without loss of
generality assume that ¢, < ¢t,, such that |, — t,| < &, we have

IT1y(t2) — T1y(ty)l

= |h1(t2) — hy(t1) + f1(t2, y(@1(t2))) fotz Uy (tz» s,y(wl(s))) dsg1(t2,5)

—f1(t1, y(w41(t1))) fotl Uy (t1» S, )’(w1(5))) dsg1(t1'5)|

< |hy(t2) — hi(t)| + |f1(t2, y(@1(t2))) — f1(t2, ¥y (w1 (E1)))]

Jy s (t2,5, ¥(01())) ds g1 (t2,9))|

+ If1(tz, y(@1(t)) f;* 1 (2,5, ¥(01(5)) ) dsga (t2,9)
— If1(ts, y(@1(t)) ;> w1 (2,5, ¥(01(5)) ) dsga (t2,9)
+ 110ty (@1(E0)) fo* w1 (82,5, (01(9)) ) dsga (t2,5)

t2,5,y(w1(s)))dsg1(ty,s)

)
)
)
)

(
(

— If1(t1, y(@1(t1))) fotz Uy
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+ f1(t1, y(w1(t1))) fotz uy (tz,5,y(w1(s)) ) dsg1(ty,5)

— f1(t1, y(w1(t1))) fotz uy

s91(t1,5)

)d
t,s,y(wq (S))) d;g1(ty,s)
t5,y(w1(s)))d

+ f1(t1, y(w1(t1))) fotz uy

/N /N /N

— f1(t1, y(w1(t1))) fotl uy (ty, s, J’(w1(3))) dsg1(t1,s)

< R(hy, €) + my(&2)|y(t2) — y(t1)l fotzlu1(tz;3» y(w1()))|ds(Vp=091(t2,p))

+ |f1(t2'J’(t1)) - f1(t1»3’(t1))| fotz Uy (tz,s,y(wl(s))) ds(V;=091(t2,P))

+ |f1(tn y€D)] f;? [1 (t2,5,¥(@01(5)) )| ds (Vi olg1(t2, P) — g1 (1. P)])

+ |F1(t y€D)] fy? [a (t2, 5, ¥(@01(5)) ) = wy (t1,5,9(@1())) | ds (Vi 91 (E1.P))
+ [F1(t0 yED)| [ 1 (1, 5, ¥(@1(9))|ds (V-0 91(£1, P))
< R(hy, €) + my(E)RD,€) ;7 11 (b2, )91(1 ¥(S))ds (Vo0 91 (E2,P))
+R871(6) [y2 11 (2, ) 91| ()N els (Voo 91(t2. D))
+my (DY ()] + |10t 0] 32 1y (t2, )1 (| ¥(S))ds (Vo[ g1 (t2, P) — g1(t1,P)])
+ [my (E)lyED] + 1f1(t1, 011 f;? Rua ()5 (Vo0 g1(t1, D))
+lmy E)lyED] + 1f1 (1, 011 [ 11 (81, )91 y($)D s (V=0 91(£1,P))
Where
N(h;, €) = sup {|hi(ty) —hi(t)|: t1,t2 € L|t; — t1| < €i=1,2},

Rri(€) = sup {|fi(t2,v) — fi(t1, V)| s tyt2 € Lt — 441 < v ERi=1,2},
Rui(€) = {[us(t2, 5,v(s)) —uz(ty, s, v(8))|: ty,t2 € Lt — 41 < evERi=1,2}.

Then, form estimate we get

IT1y(tz) — T1y ()] < R(hy, €) + [mq(t2)R(Y, )Rpi(e)n11 (Il Y11 +
f(:z ds(Vy=091(t2, D))
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+ [my |yl + F4] [n1‘P1(||| v fotz ds(Vy=olg1(t2, p) — g1(t1, P)])

+ X1 (€) fy ds (V-0 91(t2,9)) + 1101 (N Y11 [;7 ds(V5—0 91(t1, 7))

< R(hy, €) + [my(t2)R(, ORpi()]ny @1 (Il Y11 +
2 ds(Viso g1(t2,5))

+ [my [lyll + F1l [ra@a (1 y11) f2 do(VEolg1 (t2. $) — g1(t1, $)])

+ R () fy? do (V3o 91 (t2, ) + 1@ (1 Y11 2 do(Vio g1 (£1,9))]
< R(hy, €) + K1[myR(y, €) + Rf1(€)ng 901 (1)

+ [my 7+ F1l[n101(W1(6) + Rp1(O)[g1(t1,82) — 91 (t1,0)]
+n191(M[g1(t1, ) — g1 (t1, t]]-

Hence, from the continuity of the functions g, supposition (vi), we conclude
that T, maps c() into c(r). As done above we can gain

T2y (t2) — T2y(t1)| < R(hy, €) + Ka[mR(y, €) + Xpp(€)|n29,(7)
+ [my 1 + F3][ny@2 (W2 (€) + Rz (€)[g2(t1, t2) — g2(t4,0)]
+ n202(1)[g2 (81, t2) — g2(t1, t1)]]

Also, by our supposition (iv), we see that T, maps c() into c(D).
Now, from the definition of the operator T we get

Tv(ty) — Tv(ty) = T(x,y)(tz) — T(x,¥)(t1)
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= (T1y(t2), T2x(t2)) — (T1y(t1), T2x(t1))
= (T1y(tz) — T1y(t1), Tox(t;) — Tox(81)).

Thus

ITv(ty) — To(t)ll = [|[(T1y(t2) — T1y(ts), Toax(t2) — T2x(ty))||
= max {||IT1y(tz) — T1y (DI, IT2y(tz) — T2y(&1)|[}
< max {X(hy,€) + K1[mR(y,€) + Rp1(€)]ng94(1)
+ [myr + F1}[n1 91 (MW1(€) + Ry1(€)[g1(E1, t2) — g1(21,0)]
+n191(N[g1(t1, t2) — g1(t4, t1)]],
R(hz, €) + Kz [myX(y, €) + Rpz(€)|nap2 (1)
+ [mar + F2}[na@2 (W2 (€) + Ryz (€)[92(81, t2) — g2(t4,0)]
+n202(r)[g2(t1, t2) — g2 (81, t1)]1}-

This means that the class of {Tv(t)} is equi-continuous on 1, then by Arzela-
Ascoil theorem {Tv(t)} is relatively compact.

Now, we will show that the operator 7: v - v is continuous.

originally, we prove that T, is continuous. Let e > 0, the continuity of u;,i =
1,2, yields, 36 = &(e =) such that |u,(¢,s,u(s)) — w(t,s,v(s))| < €+ whenever |
u — vl < & thereforeif iy — ui < & we arrive at:

|(T1y)(®) — (T1w)(D)]

< |F1&y(@1(®) fy us(t,5,y( 01())d,g (t, )
—f1(tu (@1(0) Jy ua(t,5,u( 01(5))dsg1 (&, )|

< |F1&y(@1(®) [y us(t5,u( 01()dg1(t )
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— 1t w(@1(0) [y us(t,5,( 1(5))dsg1 (& 5)|

+ F1(t u(@1 (D) fy ur (6,5, y( 01(5))dsgs (t,5)

— f1(tu (@1(®) [y w1t 5,u( 01(5))dsg1 (¢ 5)|

< |f1&y(@1(®) = f1(tu(@1(®)] w15, y( 01(5))| dsg:(t,5)

+1f 16w (@1(O)] fy|uy (&5, y( @1(5)) — uy(t,5,u( @1(5))|ds g1 (L, 5)

< my(@®)ly®) —u®)| f;n1(t,5)@1(1y(S)]) dsgi(t,s)

+ [my (O] + If1(t, 01 fy|us(t, 5, ¥( 01()) — us (&5, u( 01(5))| dsg1(t 5)
< (8myny @1 (I + [myllull + F11€9) [, ds Vi—o 91 (t,P)

< (myni@1(lyll) + [myllull + F1]€*) Vig g1(t, ),

< (myny,(lylD) + [myllull + F1]€)K,,

where
€ = (dmyny@1(lylD) + [myllull + F1]€)K,.
Therefore
I(T1y)(@®) — (Tw)(®)] < e
This means that the operator 1, is continuous.

By a analogous way as done above we can prove that for any x,u € c¢[o,T]and
Ilx — vi< & we have

[(T,x)(®) — (T,v) ()] < €.

Hence T, is continuous operator. The operators T; (i = 1,2) are continuous
operator this indicate that T is continuous operator. Since all conditions of
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Schauder fixed point theorem are satisfied, also T has at least one fixed point
v = (x,y) € vV, which completes the evidence.

Corollary 1. Let hypotheticals of Theorem 1 be satisfied. Then quadratic
Volterra-Stieltjes functional integral equation

x(t) = h(t) + f(t,y(w(D)) fotu(t, s, y(w(s))dsg(t,s), tel (3)
has at least one solution x € c(D).

Proof. Let the hypotheticals of Theorem 1 be satisfied. Withx =y, f=f,=f.
u; = u, = u, and h; = h, = h. Also the coupled system (1) will be the Volterra-
Stieltjes quadratic integral equation (3)

3. Existence of unique solution

Here, we study the uniqueness of the solution (x,y) € x of the coupled system
of

quadratic Volterra-Stieltjes integral equations (1). Assume that functions ¢; :
R+ - R+ have the

form ¢;(x) = 1 + |x|, and the functions n;(t,s) € ¢(1) denoted by
b; =l n; = max{n;(t,s)t,s € I,i = 1,2}. Then

lu;(t, s, x)| < ni(t,s)(1+ |x|).

Notice that this assumption is a special case of assumption (iii).
Consider now the assumptions (ii)*, (iii)* having the form

(if)* fi: 1 x R - R are continuous functions and there exist constants numbers
m; such that
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Ifit,x) - fit )| <mylx—yl, i=12
From this assumption, we can deduce that
lu; (¢, s, 0| — lu;(t,s,0)| < |u;(t,5,x) —u;(t,s,0)| < b;lx|,
which implies that
lu;(t.5,0)| < |u;(t,5,0)| + bylx| < n,(t,5) + by,

where n;(t, s) = sup|u;(t, s, 0)|.
tel

Theorem 2. Let hypotheticals of Theorem 1 be satisfied with replace
hypotheticals (ii), (iii) by (ii))*, (iii)*, if the following conditions hold

m(n+ br) + (mr+ F)K < 1.
Then the coupled system (1) has an unique solution (x,y) € x.

Proof. Letwv, = (x,¥;) and v, = (x,,y,) be two solutions of the coupled system

(1), we have
I(x1,¥1) — (2, ¥2)Mlx = I(x1 — x2,¥1 — ¥2llx
= I?gX{”.Xl = 22|, ly1 — 213
Now

|21 () — x2 ()]

< |f1ty1(@1(®) [y us(t,5,y1( @01(5))ds g1 (L, 5)
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—[1({ty2 (w1 (¥)) fot uy(t,5,y2( w1(s))ds g4 (2, S)|

<|f1(ty1(@10) [y w1t 5,71( 01(5))dsg1 (2 5)

— f1(6y2 (@1(0) [y u1(t5,y1( 01(9)dsg (9|

+ |f1(& y2(01(0) [y us(t 5,91 ( 01())deg (. 5)

— f1(6y2 (@1(0) [y u1(t 5, y2( 01(9)dsg1 (9|

< |f1Ey1(01®) = F1(&y2(@1D)] [jlur (& 5, y1(01(5))|dsg1 (L, 5)

+ 11t y2 (@1(®)] fot|u1(t» 5, y1(@1(8)) —u(t,5,y2( w1(s))| dsg41(t,s)
< myly,(®) — y2(0)] [y(n1(t,5) + bylyDdsg4(t,s)

+ [my|y2 (O] + 1f1(£ 0)1b; [ ly1(8) — y2(D)| dsgy (L, 5)

< [llys = y2llmy(ng — bylly1lD) + [mylly2|l + F1]lly1 — ¥l fOtdS(Vf,=0g1(t,p))

<my(nyg + bylly1l) + [mylly2ll + F1llyr — y21l1(Vico 91 (L, 5))
<my(ng + byry) + [myry + F1]K4|ly; — y2l.

Therefore
llxy — x21l < m(n + br) + [mr + FIK|ly; — y:l|,
where
b = max{b,,b,}, m = max{m;, m,}, n = max{ny,n,}, F = max{F,,F,}and
K =max{K,K,}.
Similarly
ly1 — y2ll < m(n+ br) + [mr + FIK||x; — x,||.
Then
lCer, 1) — (2, ¥2)llx = [1(xq — x2,¥1 — ¥2llx
= nl}gx{“xl = xz2llc ly1 — y2llc}
= ntléalx{m(n + br) + [mr + FlK||y; — y,[lm(n + br) + [mr + F]K||x{ — x|}
= [m(n + br) + [mr + F]K] ntlgx{”h — xzllc, ly1 — y2llc}
=m(n+ br) + [mr + FIK ||(x1,y1) — (x2, 2)lIx-
Which implies that
[1 —m(n+ br) + [mr + FIK]||(x1,¥1) — (x2,¥2)llx < 0.
This means that

(x1,¥1) = (x2,¥2) = x1 = x3, Y1 =DY2.
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This proves the uniqueness of the solution of the coupled system (1).

4. SPECIAL CASES
A related system of fractional-order quadratic Volterra integral equations of
the following type will be studied in this section:

t(t—s)@1

x() = by (O + f1&y (@010 [, 0

u(t,s,y(w1(t)))ds, tel

(4)
t (t _ S)a—l
I'(ay)

wheret € 1 = [0,T]and «; € (0,1), and I'(«;),i = 1,2, refers to gamma
functions. Let us mention that (4) represents the so-called a coupled systems
of Volterra quadratic integral equations of fractional order. Recently, such a
type this type has been widely investigated in some papers [1, 9, 10, 12, 13,
14]

Here, we show that a coupled systems of fractional orders (4) can be treated as
a special case of a coupled systems of quadratic VVolterra-Stieltjes integral
equations (2) studied in Section 2.

YO = hy() + f2(t x(w2(D))) f up(t, s, x(w2(0)) ds,  tel

In fact, we can consider functions g;(t,s) = g;: A~ R,i = 1,2, defined by the
formula
t% — (t — s)%

9i(t.s) = (e, +1)

We can see that functions g;,i = 1,2, satisfy hypotheticals (vi)-(vii) in
Theorem 1, see [6, 8].

Now, we state the following existence results for couple system of quadratic
Volterra integral equations of fractional order (4).

Theorem 3. Let hypotheticals (i)-(viii) of Theorem 1 be satisfied. Then a
coupled systems of fractional orders (4) has at least one solution (x,y) € X.

Corollary 2. Let hypotheticals of Theorem 3 be satisfied (with = y,u; = u, =
u.fi=/f2=fh = hy, =hand a; = a, = a). Then the fractional-order
quadratic integral equation
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t(t )™

x(t) =h®) + ft,x(w®)) [, @) u(t, s, x(w(t)))ds, tel
has at least one solution in x € C(I) .

Corollary 3. Let hypotheticals of Theorem 3 be satisfied, with £, (t, y(t)) =
f2(t,x(t)) = 1. Then a coupled system of the fractional-order quadratic
integral system

t (t _ S)a—l
x(t) = hy(t) + f u (t, s, y(w1(t))) ds, tel

o T'(@)

(®)
_ )a—l

t
y(t) = hy(t) + f ( u, (t, s, x(wy (1)) ds, tel

re)
has at least one solution in (x,y) € X.
Now, letting aq, @, — 1, We 0Dbtain

Corollary 4. Let hypotheticals of Theorem 3 be satisfied. Then the coupled
system of the initial value problems

% —h (t, s,y(w1(t))), tel, x(0)=x,,
(6)
ycg? th (t S, x(wz(t))) tel, y(0)=y,

Proof. Let hypotheticals of Theorem 3 be satisfied (with £, (t,y(®) =
f2(t.x(®)) = 1,hy(t) = xo, hy(t) = yo and letting «, 8 - 1. Then a coupled
system of the fractional-order quadratic integral equations
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t
x(t) = x9 + f u,(t, s, y(w1(t))) ds, tel,

o

@)
t
YO = yo + f wy(t, s, x(w2 () ds,  tel

o

has at least one solution in x which is equivalent to the coupled system of the
initial value problems (6).

Corollary 5. Let hypotheticals of Theorem 3 be satisfied. Then the coupled
system of fractional order differential equations

D%x(t) = uy (t, s,y(wl(t))), tel
8

Dy () = uy (t,5,x(wa (1)),  tEL
with the initial conditions
I%x(@) | o0 = 7 2y(t) | 120 = 0, a3, a2 € (0,1],  (9)
has at least one solution in (x,y) € X.

Proof. let us proof the coupled system of the initial value problems (8) and (9)
IS equivalent to the coupled system of quadratic integral system

3 t(t_s)a—l p |
x(®) = [ S mesy@@)ds,  te
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(10)
t _ a-1
y(t) = fo % u,(t, s, x(w,(t))) ds, tel

By operating 1*-=1 and 1*-*zrespectively on each equation of coupled system
(10), and applying properties of fractional operator [23], we obtain

I'x(t) = Muy (8,5, y(01(8)),  1~4x(t) |29 =0
Il_az)’(t) = IluZ (t: S, y(wZ (t)))' Il_azy(t) | t=0 = 0.
Also,
4 -a1x() = u, (t, s,y(wl(t))), tel, a; €(0,1)
dt
d1-a —
12y = u, (t, s,y(wz(t))), tel a, € (0,1).

Conversely, by integrating the coupled system of initial value problems (8)
and (9), we have

I=x(t) — I'"%1x(t) | 1o = Muy (¢, 5,y (01(1)))
=2y (t) — 1'%y (t) | 1o = I'u, (t» s, )’(wz(t)))-

Operating by 1t and 1= respectively on each equation and differentiating, we
have (10). Thus, the equivalence hold.

Let hypotheticals of Theorem 3 be satisfied (with £, (¢, y(w:(®))) =

f2(tx(w2(0)) = 1,hy(®) = hy(t) = 0. Then there exists at least one solution in
x for the coupled system (8 and 9).
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